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ABSTRACT

Moment tensors derived from seismic measurements during earthquakes are related to stress tensors and keep
important information about surface displacement in the earth’s mantle. We present methods facilitating an
interactive visualization of scattered moment data to support earthquake and displacement analysis. For this
goal, we combine and link visualizations of spatial location and orientation information derived from moment
tensor decompositions. Furthermore, we contribute new tensor glyphs highlighting the indefinite character of
moment tensors as well as novel tensor clustering and averaging techniques to aid interactive visual analysis and
ease the challenges of interpreting moment tensor data.
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1. INTRODUCTION

Tensors from applications such as Diffusion Tensor Magnetic Resonance Imaging (DT-MRI)! have gained wide-
spread attention over the last years, leading to the development of sophisticated extraction and rendering tech-
niques for medical data visualization. A different source of tensors that is comparatively less known to the
visualization community are seismic earthquake measurements in geoscience. Hereby, seismic sensors at loca-
tions close to points of interest such as known or suspected faults generate a scattered set of symmetric second
order moment tensors describing earthquake point sources leading to displacement of the earth’s surface.

This scattered tensor field carries valuable information about earthquake magnitude, type, wave polarity and
fault orientation. We present novel tensor glyphs to visualize these properties for individual moment tensors.
Interpolation in moment tensor fields is a challenging task, as different source types, such as artificial explosions
and natural shear dislocation have to be treated separately. To overcome this problem, we introduce novel tensor
clustering and averaging methods as well as accompanying visualization techniques. Tensors of resulting clusters
can be combined and averaged into one representative glyph, which additionally contributes to glyph-based field
visualization by reducing visual occlusion and clutter. The spatial nature of the information conveyed by placing
tensor glyphs at positions of measurements is complemented by a visualization of the overall orientation data
present in the data in the form of a hemisphere stereographic projection. This allows us to depict clustering and
orientation not only in three dimensions but also in the projective space of orientations. Furthermore, we provide
interaction methods to intuitively match data between both spaces. While the presented methods may be used
for the illustration of stress tensors in general, they have been applied to different real world moment tensor data
sets to produce the results presented in this paper. Main contributions to the visualization community are:

e Novel moment tensor clustering and averaging technique.
e Glyph based visualization of indefinite moment tensors by polarity glyphs and slip geometry.
e Linked spherical-projective and spatial visualization techniques for moment tensor visualization.

Section 2 provides an overview of existing work in the field of moment tensors and tensor visualization. In
section 3, we give an introduction to properties, types and sources of moment tensors. Section 4 proposes new
glyph techniques to highlight important characteristics of moment tensors before introducing tensor clustering
and averaging in section 5. We build upon these findings, to describe properties and interaction techniques of the
two spaces used for visualization of scattered moment data in section 6. Results are given in section 7, whereas
section 8 concludes this paper.
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Figure 1. (a) Vector couple corresponding to my,. (b) Force dipoles in rotated system corresponding to pure shear.
Stippled lines represent the two possible fault plan orientations. (¢) Beachball representation of the situation in (b).

2. RELATED WORK

Most tensor field visualization techniques? focus on either local properties of individual tensors or global behavior
of the tensor field while neglecting similarity on a tensor basis. Visualization of local attributes of the tensors
is commonly achieved by utilizing shapes, icons or glyphs to depict relevant tensor properties, as done by
superquadric glyphs, Reynolds glyphs* or others, whereas methods that need a global topology-based analysis
of the field make use of stream line extraction along tensor eigenvectors.® To depict moment tensors, Ohtsu et
al.% use VRML and simple plane glyphs that are limited to the depiction of fault planes and movement. Another
publication in the area of moment tensor visualization’ uses dense visualization of shapes on a regular grid to
depict eigenvector directions and magnitude. However, the used data is neither scattered, nor do they perform
clustering. In general, when tensor fields are sampled in a significantly dense manner or allow straight-forward
interpolation of tensors, a global view of the data can be achieved by dense or intelligent glyph placing.® In
contrast to these methods, we aim to give a global view of tensor properties in a scattered data set, while avoiding
the drawback of classic tensor interpolation. In the context of clustering, Rohlfing et al.” make use of k-means
diffusion-tensor clustering based on probability distributions for averaging and interpolation between DT-MRI
scans. Regarding moment tensors, similarity measures based on the inner matrix product!'® have been used for
simple cluster identification, a definition that we extend in this work. So far, the tensor visualization community
has mainly focused on diffusion tensors. We introduce methods that are not specific to diffusion tensors, but
aim to improve moment tensor analysis and are applicable to a variety of symmetric second order tensor fields.

3. MOMENT TENSOR

Seismic sensors recording waves emitted during earthquakes, indicating surface displacement along faults. A
well-established way of capturing these displacement discontinuities of the earth’s surface is their representation
as force couples in moment tensors.!’ The seismic moment tensor M is a symmetric 3 x 3 tensor. Components
m;; denote the magnitude of the moment caused by the force couple in ¢-direction acting on the j-direction.
Figure 1 (a) illustrates one of nine possible force couples. The vanishing angular moment in the seismic source
implies symmetry, i.e. m;; = m;;. In the following we present fundamental properties of such tensors.

3.1 Fault Representation

An important information represented by moment tensors is the orientation of displacement discontinuities or
fault planes in the earth’s mantle. Due to symmetry, a moment tensor M can be diagonalized by rotation into
its eigenvector system, with entries on the diagonal corresponding to its eigenvalues. For pure slip along a plane,
M has eigenvalues A\ < Ay < A3 with A\; = —)3 and A\ = 0, see (1). Such moment tensors are therefore known
to be pure double-couple (DC) tensors.

M 00 ~X3 0 0
MP =10 X 0]=|0 o0 o0 (1)
0 0 )\3 0 0 )\3

In the rotated coordinate system where —\3 = mP¢ and A3 = m:%C, the corresponding eigenvector directions

e1 and eg represent two orthogonal force dipole directions of opposing forces, as shown in Figure 1 (b). Due
to displacement magnitude and direction, possible fault plane directions are rotated by 45° with respect to the
principal axis directions. Only analysis of further seismic activities can help select the true fault plane direction
from these two orthogonal candidate planes.
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3.2 Tensor Decomposition and Properties

Due to measurement errors, complex faulting behavior, and other sources, eigenvalues of real-world moment ten-
sors do not always have the properties described in 3.1 and do not generally represent pure double-couple tensors.
A tensor decomposition proposed in'? allows measurement of the contribution of a pure double-couple and other
sources. According to this decomposition, a diagonalized tensor M consists of the following components:

-1 0 0 -1 0 0
M = Miso + Mgey = Miso + aMg. +bMejpg = Miso+a| 0 0 0)+b| 0 -1 0 (2)
0 01 0o 0 2

where M;,, is the isotropic part of the tensor and My, the deviatoric part, which is decomposed into a double-
couple component My, and a compensated linear vector dipole (CLVD) component Mj,,q4, with a and b depending
on the eigenvalues of M. While this is not the only valid moment tensor decomposition, it allows classification
of moment tensors into seismic events with mainly isotropic parts (explosions or implosions), mainly DC parts
(slip along a single fault), and large CLVD components (slips along multiple faults, planar movement, or volcanic
activities). As presented in a later section, this allows predictions about moment tensor glyph shapes. During
data analysis or processing, moment tensors are often represented by an approximating best double-couple,
neglecting isotropic or CLVD contributions.

In contrast to tensor data caused by man-made explosions, moment tensors derived from wave emissions
of natural causes are usually traceless tensors, because these movements cause no changes in volume. There-
fore, positive wave polarity along one direction is always accompanied by negative displacement along another
direction, as indicated by opposing signs in the tensor eigenvalues. Thus, such moment tensors are indefinite and

E|v7w:vT-M-v>O/\wT-M-w<O (3)

with v, w € R? holds. This important property of the quadratic form qus(v) = vT - M - v can be used directly for
tensor visualization, as detailed in the next section. Two additional quantities representing the seismic moment
My and the resulting moment magnitude M,, may be derived from moment tensor data:

1 2
MO — 5 ngj Mw = 510910MO — 107 (4)
)

These scalars provide means to measure the size of an earthquake.

4. MOMENT TENSOR GLYPHS

As described earlier, tensor glyphs are the preferred way to visualize tensor properties. Beachball glyphs as
shown in Figure 1 (¢) for a pure double-couple are the classic way to depict fault plane orientations of moment
tensors, where a circle is shaded according to wave polarity. Black indicates tensional, white compressional
forces. Fault plane candidates can be perceived from the glyphs, as they are aligned with the borders between
black/white quadrants. Positive (negative) definite tensors yield completely black (white) glyphs, while CLVD
moment tensors lead to non-orthogonal shading of the glyphs. Most publications focus on the depiction of the
double-couple component of a moment tensor to identify prevailing fault plane orientations. However, neither
do these glyphs convey clear information about relative amplitudes of waves even when the shapes are scaled
by My or M,, to show earthquake magnitude, nor do they always provide a clear look at slip directions. We
overcome these drawbacks by exploiting the fact that most moment tensors are indefinite and carry important
information in their quadratic form.
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Figure 2. Standard beachball and glyph shape offsets according to gar. The shape of the resulting glyph conveys direction
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Figure 3. Gray-scale images of: (a) Glyphs scaled according to method one (top) and two (bottom). Texture shows
orientation of the best double-couple. (b) Rotated mesh and glyph with large CLVD component, showing DC and
polarity shading. (c) Slip geometry glyphs for high CLVD and high DC tensors can be combined with polarity glyphs.

4.1 Polarity Glyphs

For positive definite diffusion tensors, several authors' have proposed to visualize M by rendering the implicit
glyph qp(v) = ¢ or gpr-1(v) = ¢ for a constant ¢ € RT, thus depicting scaling and diffusion properties of the
tensor. In contrast to these methods, we use the quadratic form ¢;; to modulate a basic glyph shape to visualize
wave polarity and amplitude of indefinite tensors. The final glyph shape is desired to allow distinction between
sources with different wave polarities, directions, absolute and relative amplitudes. Given an arbitrary unit vector
in spherical coordinates v(6,¢) € R3, qar(v) represents the signed magnitude of the force couple in direction of
v. For v = e;, i € {1,2,3}, the quadratic form evaluates to the corresponding eigenvalue. Motivated by these
properties, vertices of an isotropic mesh can be modified to produce the desired glyphs, as seen in Figure 2:

1. Create a spherical mesh S with radius r

2. Compute qar(v/|[v]]) for every vertex v € S

3. Displace mesh points v by das(v) = ¢ qu (v/|[vl]) - 1o

Both r and ¢ are determined by the desired scaling preferences described in the following. For a given set of
moment tensors, seismic moments and therefore extremal values of gy may vary strongly. The straightforward
approach to yield consistent glyph scaling over a set of moment tensors is to choose ¢ = m and fix
r to a constant value over the data set. This way relative differences in glyph shape displacements dp; are
equivalent to relative differences in seismic moments. Furthermore, glyphs shapes do not self intersect, as
[|das(v)|| < 7 holds for all M. While this method accurately and consistently reflects force magnitudes by glyph
displacements, glyphs with comparatively small wave amplitudes degenerate to sphere-like shapes as observable
in Figure 3 (a), as earthquake magnitudes are reflected in glyph silhouettes directly. As a second method, we
choose ¢ = m with r proportional to M,, for every glyph individually. This results in glyphs that show
accurate force and displacement ratios within a glyph and represent differences in earthquake magnitude between
glyphs by uniform scaling. The advantage of latter method is the clearer depiction of directions and polarity of
maximal forces. A drawback of this uniform scaling in three dimensions is, however the ambiguity of size and
distance, which requires earthquake magnitude to be mapped to an additional visual parameter such as color.

4.1.1 Visualization

Following the shading convention of beachball glyphs, we make use of texturing to either highlight the best double-
couple of a glyph by appropriate shading of the quadrants, or map positive and negative polarity to different
colors. Figure 3 (b) shows examples of both shading types. Polarity based shading allows easy identification of
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tensors with large isotropic or CLVD components. We note that spherical meshes are rotated prior to vertex
displacement, to ensure that high resolution poles of the discretized mesh coincide with the direction of es. This
allows accurate texturing of the region where the four quadrants meet. All glyphs are shaded and textured
using pixel shaders to avoid visual artifacts resulting from low resolution meshes and aid in conveying glyph
shape properties such as curvature. In comparison to beachball renderings, polarity glyphs are able to not only
represent fault plane orientation but CLVD and isotropy fractions and absolute displacement magnitudes as well.

4.2 Slip Geometry

As noted by Haller'3 4 in the context of flow vortices, indefinite matrices describe a partition of local space into
sections with attracting and repelling flow behavior. The polarity glyphs introduced in the last section encode
this attracting and repelling behavior in the context of wave propagation and force orientation by shading surface
areas accordingly. To convey the full shape of this flow separation or fault geometry, we propose a method to
extract slip geometry Gg of a tensor directly. For a given indefinite tensor, the quadratic form ¢p; defines a unique
scalar field on the unit-sphere, with a zero set {v|gy(v) = 0} corresponding to the closed boundary between
regions of inflow and outflow or opposing force directions. In moment tensor data, this boundary indicates slip
geometry. To extract this geometry, we discretize the unit-sphere uniformly along its spherical coordinates 6 and
¢. The resulting grid cells [¢Af, (i + 1)A0] x [jAP, (j + 1)A¢] are quads in spherical coordinate space and thus
qualify for standard isocontour extraction techniques. For the isovalue of gps(v) = 0, performing the standard
Marching Quads algorithm on these cells yields a connected set of lines on the unit-sphere. Slip geometry
triangles are created by connecting these line segments with the origin of the unit sphere. These triangles are a
valid representation of Gg, as qas(w) = 0 holds for all w with vT - H;ﬁH =1.

As isotropic tensors do not contain a distinct direction of slip, we only apply this method to anisotropic tensors,
as common in real world data sets.

4.2.1 Visualization

Visualizations of Gg for different moment tensors are shown in Figure 3 (c). Highlighted rendering of glyph
boundaries helps distinguish different slip geometry types. Slip and polarity glyph types complement each other
when combined. Pure double-couple tensors produce two perpendicular flat sphere segments as expected, whereas
CLVD tensors produce more complex geometries due to different contributions of a number of double-couple fault
planes to the final shape of the glyph. In contrast to beachball or polarity glyphs, this extracted geometry gives
a clear look at interior displacement discontinuities. Highest information density is reached when combined with
transparent polarity glyphs.

5. CLUSTERING AND AVERAGING

The presented glyphs facilitate a local visualization and analysis of scattered moment tensor fields. As straight-
forward interpolation of scattered moment tensors is not feasible due to the loss of important tensor properties
when mixing different source types, tensor grouping or averaging has to rely on additional clustering steps. For
an insightful visualization of the complete tensor field, several reasons motivate the averaging and clustering
of multiple tensors into subsets. A first reason is given by visual occlusion that frequently appears in regions
with a high density of seismic activities being represented by large and dense groups of moment tensor glyphs.
A second reason is the fact that accumulations of spatially close moment tensors commonly represent similar
faulting mechanisms. Similar faulting mechanisms may be summarized into an abstract average seismic event,
thus reducing information overload. Another reason for moment tensor clustering is the identification of locations
and properties of frequently active seismic sources. In the following, we present a selection of moment tensor
similarity measures and introduce a novel tensor clustering method along with an averaging procedure, allowing
efficient computation and visualization of tensor clusters.

5.1 Similarity Measures

For diffusion tensors, a number of metrics were proposed over the last decades.'> Among others, Kagan'6 and
Willemann'® present similarity measures for moment tensors. While Kagan defines similarity between moment
tensors as the minimum angle needed to transform one double-couple into another by rotation, Willemann uses
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Figure 4. Moment tensors of different earthquakes with identical fault geometry. amin = I, &min = 0, S = II and S =0.

the inner tensor product to define similarity on the full tensor rather than the best double-couple. In the following
we summarize both approaches and introduce modifications to allow source-type clustering.

5.1.1 Double-Couple Rotation

The double-couple orientation of a moment tensor is fully described by the eigenvector system of the tensor.
For a fixed ordering of eigenvectors such as e, ey, e, ~ e1, €2, e3, this orthogonal system can be converted into a
unit-quaternion!” representation Q = (cos(a/2), sin(a/2) - q) = (g0, q1, G2, q3) by:

@+ai—a3—a3  2(q192 — qogs) 2(q193 + 9092)
e1 ex ez|=| 2qetewn) B-G+E-6 20— pn) (5)
2(q193 — qoq2) 2(q2q3 + qo1) B -G — B+ G

This right-handed (left-handed) coordinate system is not unique but results in 4 different quaternions de-
pending on choice of eigenvector signs, from which one commonly chooses the solution with minimal rotation
angle to the canonical coordinate frame. For quaternions Q s, @y of two moment tensors, the minimal angle of
rotation between double-couples of M and N corresponds to

min(M, N) = 2 cos™" (mazq((Qnr - ¢- Qx')o)) (6)

where ¢ € {(1,0,0,0),(0,1,0,0),(0,0,1,0),(0,0,0,1)}, and (.)g corresponds to the scalar component gy of a
quaternion. This distance function a,,;, can be used to define a similarity measure on double-couples. Thus,
when neglecting CLVD and isotropic components of moment tensors, this defines a metric on the approximating
double-couples of arbitrary moment tensors (with the exception of isotropic tensors).

We modify this distance function to not only serve as a similarity measure on seismic wave propagation of
earthquakes, but as well on fault geometry, see Figure 4. After computing o, we repeat computation of auniy
with swapped directions e; and es in the coordinate system of one of the two moment tensors. The overall
minimal angle &,;, of both computations is equal to the minimal angle needed to rotate one fault plane system
into the other, as illustrated in Figure 4. While slipping directions of moment tensors that are similar to each
other with respect to G, may have opposing directions, this measure identifies moment tensors based on
similarity of fault geometry.

5.1.2 Full Tensor Similarity

In contrast to the double-couple similarity measure described above, this distance function is not restricted to
approximating double-couples, but operates on the full moment tensor data. For two second order square tensors
M,N with >, A\? = 2, the inner tensor product

M-N:Zmij-nij (7)

ij

is a natural measure of tensor similarity. Values of the product are limited to the interval [—2, 2] with M - M = 2
and M - —M = —2. A function
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S(M,N) = cos™* (Q) (8)

defines a distance between arbitrary normalized moment tensors M and N. S is maximal for opposing moment
tensor pairs, i.e. for moment tensor pairs with identical orientation in the eigenvector system and opposite
eigenvalue signs. We again propose a modified similarity measure by identifying moment tensors with identical
fault orientations. For this matter, we replace M - N by |M - N| in the computation of S to yield a new distance
measure S with similar properties as dunin as indicated in Figure 4. In contrast to i, this distance function
is able to operate on purely isotropic tensors as well. Aside from this fact, choice of the similarity measure is
based on whether to include CLVD components into the clustering algorithm or not. If the data is suspected
to contain a lot of noise, causing pure double-couple sources to include incorrect CLVD components, the first
measure might therefore be preferred over the latter.

In the following the four presented distance functions will be used to realize interactive and automatic tensor
clustering. It is important to note that both presented distance measures ignore the magnitude of the seismic
moment either by using the eigenvector system directly, or by operating on normalized tensors.

5.2 Clustering

Clustering serves to group and identify similarities in arbitrary data sets where its data reduction and information
densification properties make it a prime candidate to be applied to cluttered tensor glyph visualizations. In the
context of this work, tensor clusters have to fulfill two properties. Firstly, tensors in a cluster have to be
significantly similar to each other, secondly clusters should be constrained to a local neighborhood to avoid
grouping of spatially separate tensors. A clustering of objects based on a similarity measure fulfilling the first
property is given by the Quality-Threshold Clustering (QT) algorithm.'® To satisfy the second property, we
propose a Distance-QT Clustering algorithm utilizing a minimum spanning tree representation of each cluster.

5.2.1 Distance-Quality-Threshold Clustering

Our DQT-Clustering algorithm is a modified version of the classic QT-Clustering method that additionally
imposes euclidean distance constraints on the final clusters. Input parameters of the clustering algorithm are a
distance function d such as q;,;n, a threshold €4 that specifies the maximal allowed distance in similarity between
two members of a cluster and a euclidean distance threshold €. defining the maximal euclidean distance between
nearest neighbors of a cluster. The clustering algorithm takes the following form:

Let U denote the set of unclustered tensors and C¢ the set of clusters.

Choose a tensor M € U, starting a new candidate cluster Cpy = {M}.

Add argminpcy,c,,(marnec,, (d(P,N))) to Cyr, until maryec,, (d(P, N)) > eq for all P € U/Cyy.
Build a euclidean minimum spanning tree for Cjy.

Remove all parts of C; that are connected to M by an edge larger than e,.

Repeat from 2 with an unvisited M € U, until all tensors in U have generated a candidate cluster.
Add the largest candidate add to C. Remove its members from U. Clear all candidate clusters.
Repeat from 2, until U = 0.

O NSO W

When execution of the algorithm has finished, C contains non-overlapping tensor clusters. With exception
of steps four and five, this clustering algorithms is identical to the standard QT method. In step three the
point P that minimizes the maximal distance to all members of the candidate cluster C}; is added to the set, if
maxrnec,, (d(P,N)) > ¢4. This guarantees complete linkage clustering, i.e. the maximal distance with respect
to d between two arbitrary members of a cluster is limited by €4. To minimize computational complexity, we
pre-compute d for pairs of moment tensors during loading of the data set, thus ensuring reduced computation
times during clustering.

While these steps yield clustering in the space of tensor similarity, they do not impose constraints on euclidean
space, resulting in clusters that are distributed over large parts of the scattered tensor field. To enforce spatial
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Figure 5. (a) Minimum spanning tree for a set of points in R%. Parts of the tree are removed, as connecting edges exceed
€e. (b) Metaball radius for a selected node with underlying extended cluster bounding box. (c) Illustration of final cluster
outline.

locality of moment tensor clusters, we introduce a cluster splitting method based on minimum spanning trees.
For a set of objects in euclidean space, a euclidean minimum spanning tree corresponds to a tree representation
of the set with a minimal total of edge lengths among all trees that can be constructed from that set. We
construct the minimum spanning tree for a candidate cluster using Prim’s algorithm. By removing objects
from the cluster that are connected to M by edges exceeding the pre-defined threshold €., cluster locality is
guaranteed, as illustrated by Figure 5 (a). Connectivity information gathered in this tree-building process is
saved for visualization purposes.

5.3 Tensor Averaging

Clusters obtained by the described method facilitate local tensor averaging while excluding tensors of strongly
dissimilar types, leading to an accurate representation of a closed set of moment tensors. Given a cluster of
moment tensors M;, we compute a representative tensor M, by averaging of eigenvector directions and eigenvalues
of cluster members. For M;, i € {1,..,n} with ordered eigenvectors et e}, eé, eigenvectors of M, evaluate to

Zieli Zielﬁ Zieg >
- - >
122 erll 1122 esll 1122 esll

where eigenvectors e’ are oriented according to a chosen right-hand coordinate system implied by (9, €9,€9) to
avoid ambiguity. Figenvectors of isotropic sources are omitted; corresponding eigenvalues are averaged similarly.
If Gumin or S was used during clustering, ¢! and e} may be swapped during the averaging process to correspond
to the directions of § and eJ. From this eigenvector system, the average pseudo moment tensor is reconstructed
by solving

etegep) = ( o)

a a a — a a a a a a
Ma : 61 62 63 — Al : 61 AQ : 62 3 ° 63 . (10)

Glyphs of these average tensors show an accurate representation of average fault plane directions and polarity
magnitudes. For source type clustering we limit display of average tensors to slip geometry glyphs, as wave
polarity is neglected during that type of clustering. The representative glyph of a cluster is placed at the
position of an edge of the minimum spanning tree that is closest to the centroid of the cluster’s bounding box.

5.3.1 Cluster Visualization

While classic ways of visualizing object clusters by distinct object colors or shapes allow visual distinction of
clusters, they often fail to convey a homogeneous representation of a cluster and rely on the visual presence of
cluster members. Cluster outlining techniques avoid these problems. We propose a cluster outlining technique
based on implicit metaball shapes'? 2° to allow consistent cluster visualization in the absence of cluster members.
The minimum spanning tree skeleton obtained during clustering provides connectivity information in a cluster
and can be used in the process of visualization. For cluster outline generation we center an energy function

— 12\ ?
f(pi,p) = max (O, (1 — M) ) (11)

K3
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at every member tensor position p; with a radius r; corresponding to the maximal length of adjacent edges in the
minimum spanning tree, as seen in Figure 5 (b). This energy function has similar properties as the commonly used
Gaussian function, but has an important advantage in evaluation speed. The accumulation of energy functions in
a cluster yields a three-dimensional scalar field, that serves as basis for isovolume extraction. For discretization
purposes, the cluster is enclosed by an extended version of its axis aligned bounding box with coordinates
(20, Y0, 20, T1, Y1, 21) = (Min;((pi)z) — maz;(r;), mini((pi)y) — maz;(r;), mini((pi)=) — maz;(r;), maz;((pi)z) +
maxz;(r;), maz;((pi)y) +maz;(r;), maz;((p;)-) +maz;(r;) and sampled by a uniform grid, see Figure 5 (b). Scalar
values s(.) at grid node positions g; are evaluated as s(g;) = >, f(ps,9;). We use the standard Marching Cubes
technique to extract a triangulated isovolume for a value of 0.6 in the resulting uniformly sampled scalar field.
Hereby, empirical choice of isovalue and choice of the r; produce a connected outline of the cluster.

A rendering of this isovolume geometry may be used for direct cluster visualization. However, we restrict
rendering of these isovolumes to their view dependent silhouettes to provide a clear look at the cluster contents.
To achieve this, we make use of the OpenGL stencil buffer to mask out irrelevant parts of the isovolume:

Choose a cluster C' with |C| > 1.

Clear the stencil buffer bits to 1.

Draw the triangulated isovolume of C' to the stencil buffer only, setting covered bits to 0.

Draw an the enlarged isovolume with shading and coloring to pixels where the stencil buffer is 1.
Repeat from 1 until all desired clusters are drawn.

G W o=

An enlarged version of the isovolume used during rendering in step 4 is obtained by displacing isovolume
vertices along their normals. As a result of this rendering technique, a view dependent outline of the cluster
is drawn, providing a clear view at inner parts of the cluster, while depicting the silhouette of the cluster. An
illustration is given in Figure 5 (c). These outlines provide a visual clue about cluster dimensions, even if no
cluster members are drawn.

6. INTERACTIVE VISUALIZATION

We have described methods to visualize and cluster scattered moment tensor fields in R®. This section details
how to enhance visualization of such fields by the addition of an interactive projective rendering of the data set.

6.1 Stereonet Display

Lower hemisphere stereographic projections, or stereonets are angle preserving projective mappings that are fre-
quently used in geoscience to analyze orientations of moment tensor data. A generalized stereographic projection
for a projection point P on the unit-sphere maps points P; on the unit-sphere surface to the intersection point
of the line ¢;(t) = P + t(P — P;) with the plane orthogonal to (O — P) going through the origin. This mapping
is undefined for P and is restricted to the hemisphere opposite to P in the following. An illustration of the
mapping process along with a concrete example of a projected hemisphere are shown in Figure 6 (a) and (b).
To give a global impression of fault directions and moment tensor orientations, we extend the three-dimensional
rendering context by a viewport showing such a stereonet type visualization. We render moment tensor orienta-
tions as points on the unit-sphere corresponding to minor and major eigenvector directions of the tensors. Major
eigenvector directions are traditionally rendered as filled, minor eigenvector directions as empty dots. Due to
orthogonality, the double-couple and fault plane directions of a moment tensor are uniquely defined by these
two positions. As we detail in the results section, this view allows detailed cluster analysis of moment tensor
orientations, while incapable of clearly depicting spatial information.

6.2 Interaction

To make full use of combined three-dimensional and projective display of a scattered moment tensor field, we
provide both views with a list of interaction capabilities:
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o Highlighting: When pointing at an eigenvector position in the stereographic view, both corresponding
eigenvector directions are highlighted and connected to the sphere origin by line drawing while rendering
a double-couple watermark in the background of the stereonet. The corresponding glyph in the three-
dimensional view is highlighted by color and size change to allow matching of stereonet and glyph display.

o Selection: Users are able to use mouse based multiple tensor selection in both views to select, highlight or
hide tensors. Affected glyphs and eigenvectors are highlighted, or hidden in both views.

e Parameter Selection: We provide the user with means to select a distance function for clustering, adjust
€e, €q and change glyph type display as well as coloring (earthquake magnitude, CLVD fraction, etc.).

o Similarity Querying: Right click on a tensor M highlights all tensors N (glyphs and projected eigenvector
directions) that satisfy d(M, N) < €, for the currently selected distance function and threshold.

e Clustering: Users can initiate clustering, toggle the display of individual cluster outlines, cluster members
or representatives in both views.

All interaction methods aim to improve visual matching between the stereographic and the three-dimensional
view of the data. Furthermore, they are designed to allow manual data exploration and analysis.

7. RESULTS

In the following, we present visualizations of two data sets containing moment tensor data from earthquakes
in Chile and Tonga. Figure 6 (b) gives an impression of beachball based moment tensor visualization together
with a stereonet projection with fixed projection point and slab geometry display. The same figure shows a
color based clustering visualization using polarity glyphs. Polarity glyphs allow easy identification of wave
propagation directions and CLVD tensors, by conveying magnitudes and directions by tensor shapes. The
alternative rendering of the stereonet as a list view, showing one stereonet for each cluster, allows uncluttered
visualization of clusters in projective space. Watermarking using average double-couple improves perception of
fault directions in stereonet display. In general, the stereonet display shows the distribution of positive and
negative wave propagation directions which is further aided by polarity glyph display. Figure 7 shows the benefit
of information reduction by clustering. Clusters may be visualized by average tensors, outlines, cluster members
or a combination of these. Cluster representatives are highlighted by color and size to be distinguishable from
regular cluster members. The selected distance function (DC rotation) shows clear and correct clustering in
projective and three-dimensional space. Cluster outlines show information about spatial location and size of
frequent earthquake sources and avoid occlusion of individual earthquake sources.

Similarity querying as shown in Figure 8 is useful for quick identification of similar earthquake sources. Compared
to clustering, it does not restrict its solution to local regions, but highlights tensors in all regions of the data
set. While display of all clustering data such as outlines, and cluster members, as seen in Figure 8, may lead to
a cluttered view if no manual selection is performed, it can be used to gain a quick overview of the structure
of a moment tensor data set. For cluster outlining in stereographic space, the minimum spanning tree is not
created in three-dimensional euclidean space, but corresponds to a minimum spanning tree on the surface of
the sphere, connecting eigenvector directions along geodesic lines of the sphere. This tree commonly leads to
two cluster outlines per cluster, separating major and minor eigenvector directions, as seen in Figures 7 and
8. Figure 9 (c¢) shows a selection of visualization settings for a small moment tensor cluster including outline
visualization. The depicted average tensor is scaled to be distinguishable from regular cluster member and can
be seen to be a well-aligned representative glyph. Correct cluster outlining is performed for arbitrary viewing
angles. In contrast to the other presented results, which show the Chile data set, Figure 9 (a) compares the
standard beachball visualization technique applied to the Tonga data set with our approach, yielding a far less
cluttered view of the fault data. Figures 9 (b) shows visual feedback during orientation highlighting. In the
presented data sets, clustering of moment tensors as well as geometry construction took less than a second on a
PC with standard hardware (Intel Core 2 Duo @ 2 Ghz) and does not limit interactivity for small or medium
sized data sets. For bigger data sets with a large number of tensors, QT clustering methods need additional
optimizations, which are outside of the scope of this work.
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(a)

Figure 6. (a) Stereographic mapping procedure. (b) Left: Fixed-point stereonet projection shows longitudinal and equa-
torial lines along with major and minor eigenvector directions of tensors. Beachballs are colored by moment magnitude.
Right: Cluster based polarity glyph coloring. Stereonet cluster-list shows average double-couple orientation as watermarks.

Figure 7. View dependent stereonet along with cluster selection and outlining in R and stereonet view. The representative
glyph is displayed along with cluster members (left). Replacing cluster members by their respective cluster averages leads
to a simplified and decluttered view of the tensor field and shows locations of frequent and similar seismic activities (right).

8. CONCLUSION AND FUTURE WORK

In this work we have introduced visualization techniques that aid the visual analysis of scattered moment tensors.
We combine novel glyph based techniques with stereonet based projective renderings. A new clustering technique
operating in moment and euclidean space allows the efficient reduction of redundant information, leading to
less cluttered and more structured visualizations. This can be used as guide to identify similar earthquake
mechanisms or sources. Various interaction techniques allow the direct mapping of information from projective
to three-dimensional space. All presented methods lead to a higher information density than existing techniques
and improve over the state of the art by conveying data properties that were previously hidden or hard to
distinguish. Direction of future work includes the incorporation of further user preferences into the clustering
process as well as enhanced display of additional geological information such as mantle geometry.

Figure 8. After user selection, tensors similar to a selected moment tensor are highlighted (left). Visualization of all
identified clusters by outlining in projective and three-dimensional space (right).

SPIE-IS&T/ Vol. 7868 78680I-11



Figure 9. (a) Comparison of polarity glyph cluster averaging with unclustered beachball visualization. (b) Moment tensor
highlighting in stereonet view shows related wave propagation directions and watermark. (c) Display of cluster members
or the representative glyph can be toggled by the user. Correct outlining is preserved if changing the viewing angle.
Display of slip geometry in a cluster allows a clearer look at geometrical segmentation in the form of fault planes and
displacement discontinuities. Furthermore, the conic shape supports analysis of wave propagation directions and angles.

[13]

REFERENCES

Ozarslan, E. and Mareci, T. H., “Generalized diffusion tensor imaging and analytical relationships between
diffusion tensor imaging and high angular resolution diffusion imaging,” MRM 50, 955-965 (2003).
Weickert, J. and Hagen, H., [ Visualization and processing of tensor fields], Springer Berlin (2006).
Kindlmann, G. L., “Superquadric tensor glyphs,” in [VisSym], Deussen, O., Hansen, C. D., Keim, D. A,
and Saupe, D., eds., 147-154, Eurographics Association (2004).

Moore, J., Schorn, S., and Moore, J., “Methods of classical mechanics applied to turbulence stresses in a
tip leakage vortex,” J. of Turbomachinery 118(4), 622-629 (1996).

Delmarcelle, T. and Hesselink, L., “Visualization of second-order tensor fields and matrix data,” in [I[EEFE
Visualization], Kaufman, A. E. and Nielson, G. M., eds., 316-323, IEEE Computer Society (1992).

Ohtsu, M. and Shigeishi, M., “Theory and application of moment tensor analysis in AE,” Proc. of the
Internat. Conf. on Emerging Technologies in NDT , 19-26 (2004).

Neeman, A., Jeremic, B., and Pang, A., “Visualizing tensor fields in geomechanics,” in [[EEE Visualization)],
35-42, IEEE Computer Society (2005).

Hlawitschka, M., Scheuermann, G., and Hamann, B., “Interactive glyph placement for tensor fields,” in
[Proc. of Third Internat. Sym. on Visual Computing], 331-340, Springer (2007).

Rohlfing, T., Sullivan, E., and Pfefferbaum, A., “Divergence-based framework for diffusion tensor clustering,
interpolation, and regularization,” in [Proc. of IPMI], 507-518, Springer (2007).

Willemann, R., “Cluster analysis of seismic moment tensor orientations,” Geophys. J. Internat. 115(3),
617-634 (1993).

Aki, K. and Richards, P., [Quantitative seismology: Theory and methods], Freeman San Francisco (1980).
Knopoff, L. and Randall, M., “The compensated linear-vector dipole: a possible mechanism for deep earth-
quakes,” J. of Geophys. Research 75(26), 4957-4963 (1970).

Haller, G., “Lagrangian structures and the rate of strain in a partition of two-dimensional turbulence,”
Phys. of Fluids 13, 3365-3385 (2001).

Haller, G., “An objective definition of a vortex,” J. of Fluid Mech. 525, 1-26 (2005).

Pasternak, O., Sochen, N., and Basser, P. J., “The effect of metric selection on the analysis of diffusion
tensor MRI data,” NeuroImage 49(3), 2190-2204 (2010).

Kagan, Y., “3-D rotation of double-couple earthquake sources,” Geophys. J. Internat. 106(3), 709-716
(1991).

Berthold, K. and Horn, P., “Closed-form solution of absolute orientation using unit quaternions,” J. of the
Optical Society of America 4(4), 629-642 (1987).

Heyer, L., Kruglyak, S., and Yooseph, S., “Exploring expression data: identification and analysis of coex-
pressed genes,” Genome research 9(11), 1106-1115 (1999).

Blinn, J., “A generalization of algebraic surface drawing,” ACM Trans. on Graph. 1(3), 235-256 (1982).
Leclercq, A., Akkouche, S., and Galin, E., “Mixing triangle meshes and implicit surfaces in character
animation,” in [Proc. of Eurographic Workshop on Computer animation and simulation], 37-47 (2001).

SPIE-IS&T/ Vol. 7868 78680I-12



